Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub

    Description

    An intermediate-complexity, quasi-physically based, meteorological model (MicroMet) has been developed to produce high-resolution (e.g., 30-m to 1-km horizontal grid increment) atmospheric forcings required to run spatially distributed terrestrial models over a wide variety of landscapes. The following eight variables, required to run most terrestrial models, are distributed: air temperature, relative humidity, wind speed, wind direction, incoming solar radiation, incoming longwave radiation, surface pressure, and precipitation. To produce these distributions, MicroMet assumes that at least one value of each of the following meteorological variables are available for each time step, somewhere within, or near, the simulation domain: air temperature, relative humidity, wind speed, wind direction, and precipitation. These variables are collected at most meteorological stations. For the incoming solar and longwave radiation, and surface pressure, either MicroMet can use its submodels to generate these fields, or it can create the distributions from observations as part of a data assimilation procedure. MicroMet includes a preprocessor component that analyzes meteorological data, then identifies and corrects potential deficiencies. Since providing temporally and spatially continuous atmospheric forcing data for terrestrial models is a core objective of MicroMet, the preprocessor also fills in any missing data segments with realistic values. Data filling is achieved by employing a variety of procedures, including an autoregressive integrated moving average calculation for diurnally varying variables (e.g., air temperature). To create the distributed atmospheric fields, spatial interpolations are performed using the Barnes objective analysis scheme, and subsequent corrections are made to the interpolated fields using known temperature-elevation, wind-topography, humidity-cloudiness, and radiation-cloud-topography relationships.

    Publication Notes

    • You may send email to rmrspubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Liston, Glen E.; Elder, Kelly. 2006. A meteorological distribution system for high-resolution terrestrial modeling (MicroMet). Journal of Hydrometeorology. 7(April): 217-234.

    Keywords

    terrestrial modeling, MicroMet, Barnes objective analysis scheme

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/26813