Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): D.V. D'Amore; P.E. Hennon
    Date: 2006
    Source: Global Change Biology. 12: 524-545
    Publication Series: Scientific Journal (JRNL)
    PDF: View PDF  (2.1 MB)

    Description

    Yellow-cedar (Callitropsis nootkatensis (D. Don) Oerst.) is a valuable tree species that is experiencing a widespread decline and mortality in southeast Alaska. This study evaluated the relative importance of several potential risk factors associated with yellow-cedar decline: soil saturation, soil aluminum (Al) toxicity or calcium (Ca) deficiency, and air and soil temperature. Data were collected from permanent vegetation plots established in two low-elevation coastal forests exhibiting broad ranges of cedar mortality. Measurements of each risk factor were contrasted among classified forest zones to indicate if there were strong links with decline. Hydrology alone is weakly associated with yellow-cedar decline, but could have a predisposing role in the decline by creating exposed conditions because of reduced forest productivity. Yellow-cedar decline is not strongly associated with soil pH and extractable A1 and Ca, but there appears to be Ca enrichment of surface soils by feedback from dead yellow-cedar foliage. Air and soil temperature factors are strongly associated with decline. Based on these results, an hypothesis is presented to explain the mechanism of tree injury where exposure-driven tree mortality is initiated in gaps created by soil saturation and then expands in gaps created by the tree-mortality itself. The exposure allows soils to warm in early spring causing premature dehardening in yellow-cedar trees and subsequent freezing injury during cold events. Yellow-cedars growing in the protection of shade or snow are not preconditioned by this warming, and thus not as susceptible to cold injury. Yellow-cedar decline appears to be associated with regional climate changes, but whether the cause of these changes is related to natural or human-induced climate shifts remains uncertain. Management implications, the possible role of climate, and recommended research are discussed.

    Publication Notes

    • You may send email to pnw_pnwpubs@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    D''Amore, D.V.; Hennon, P.E. 2006. Evaluation of soil saturation, soil chemistry, and early spring soil and air temperatures as risk factors in yellow-cedar decline. Global Change Biology. 12: 524-545

    Keywords

    aluminum, calcium, soil temperature, yellow-cedar decline

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/27204