Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): C. K. Keller; R. O'Brien; J. R. Havig; J. L. Smith; B. T. Bormann; D. Wang
    Date: 2006
    Source: Ecosystems. 9: 634-646
    Publication Series: Scientific Journal (JRNL)
    PDF: View PDF  (1.1 MB)

    Description

    The hydrochemical signatures of forested ecosystems are known to be determined by a time-variant combination of physical-hydrologic, geochemical, and biologic processes. We studied subsurface potassium (K), calcium (Ca), and nitrate (NO3) in an experimental red-pine mesocosm to determine how trees affect the behavior of these nutrients in soil water, both during growth and after a harvest disturbance. Solution chemistry was monitored for 2 years at the end of a 15-year period of tree growth, and then for 3 more years after harvest and removal of aboveground biomass. Concentrations were characterized by three distinct temporal patterns that we ascribe to changes in solute generation mechanisms. Prior to harvest, K soil-water concentrations were relatively uniform with depth, whereas Ca soil-water concentrations doubled with depth. Nitrate concentrations were below detection in soil water and discharge (drainage) water. Plant uptake and water/nutrient cycling exerted strong control during this interval. During the 1st year after, harvest, K concentrations tripled in shallow soil water, relative to preharvest levels, and showed a strong seasonal peak in discharge that mimicked soil temperature. Summer soil temperatures and annual water flux also increased. Decomposition of labile litter, with complete nitrogen (N) immobilization, characterized this interval. In the third interval (years 2 and 3 after harvest), decomposition shifted from N to carbon (C) limitation, and Ca and NO3 concentrations in discharge spiked to nearly 200 and 400 pM, respectively. Relatively stable ionic strength and carbonate chemistry in discharge, throughout the study period, indicate that carbonic-acid weathering was sustained by below-ground decomposition long after the harvest. This stable chemical weathering regime, along with the persistence of N limitation for a long period after disturbance, may be characteristic of early-phase primary-successional systems.

    Publication Notes

    • You may send email to pnw_pnwpubs@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Keller, C. K.; O''Brien, R.; Havig, J. R.; Smith, J. L.; Bormann, B. T.; Wang, D. 2006. Tree harvest in an experimental sand ecosystem: plant effects on nutrient dynamics and solute generation. Ecosystems. 9: 634-646

    Keywords

    biocycling, nutrient cycling, ecosystem disturbance, ecosystem regulation, mesocosm, calcium, potassium

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/27212