Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Albert R. Stage; Nicholas L. Crookston
    Date: 2007
    Source: Forest Science. 53(1): 62-72.
    Publication Series: Scientific Journal (JRNL)
    Station: Rocky Mountain Research Station
    PDF: Download Publication  (874.48 KB)


    Imputation is applied for two quite different purposes: to supply missing data to complete a data set for subsequent modeling analyses or to estimate subpopulation totals. Error properties of the imputed values have different effects in these two contexts. We partition errors of imputation derived from similar observation units as arising from three sources: observation error, the distribution of observation units with respect to their similarity, and pure error given a particular choice of variables known for all observation units. Two new statistics based on this partitioning measure the accuracy of the imputations, facilitating comparison of imputation to alternative methods of estimation such as regression and comparison of alternative methods of imputation generally. Knowing the relative magnitude of the errors arising from these partitions can also guide efficient investment in obtaining additional data. We illustrate this partitioning using three extensive data sets from western North America. Application of this partitioning to compare near-neighbor imputation is illustrated for Mahalanobis- and two canonical correlation-based measures of similarity.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Stage, Albert R.; Crookston, Nicholas L. 2007. Partitioning error components for accuracy-assessment of near-neighbor methods of imputation. Forest Science. 53(1): 62-72.


    most similar neighbor, k-nn inference, missing data, landscape modeling

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page