Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Edwin Jimenez; M. Yousuff Hussaini; Scott L. Goodrick
    Date: 2007
    Source: In: Butler, Bret W.; Cook, Wayne, comps. The fire environment--innovations, management, and policy; conference proceedings. 26-30 March 2007; Destin, FL. Proceedings RMRS-P-46CD. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. CD-ROM. p. 111-121
    Publication Series: Proceedings (P)
    Station: Rocky Mountain Research Station
    PDF: View PDF  (815 B)

    Description

    The purpose of the present work is to quantify parametric uncertainty in Rothermel’s wildland fire spread model (implemented in software such as BehavePlus3 and FARSITE), which is undoubtedly among the most widely used fire spread models in the United States. This model consists of a nonlinear system of equations that relates environmental variables (input parameter groups) such as fuel type, fuel moisture, terrain, and wind to describe the fire environment. This model predicts important fire quantities (output parameters) such as the head rate of spread, spread direction, effective wind speed, and fireline intensity. The proposed method, which we call sensitivity derivative enhanced sampling (SDES), exploits sensitivity derivative information to accelerate the convergence of the classical Monte Carlo method. Coupled with traditional variance reduction procedures, it offers up to two orders of magnitude acceleration in convergence, which implies that two orders of magnitude fewer samples are required for a given level of accuracy. Thus, it provides an efficient method to quantify the impact of input uncertainties on the output parameters.

    Publication Notes

    • You may send email to rmrspubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Jimenez, Edwin; Hussaini, M. Yousuff; Goodrick, Scott L. 2007. Uncertainty quantification in Rothermel''s Model using an efficient sampling method. In: Butler, Bret W.; Cook, Wayne, comps. The fire environment--innovations, management, and policy; conference proceedings. 26-30 March 2007; Destin, FL. Proceedings RMRS-P-46CD. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. CD-ROM. p. 111-121

    Keywords

    wildland fire management, Rothermel’s wildland fire spread model, sensitivity derivative enhanced sampling, SDES

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/28555