Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub


    Long-term measurements of soil nitrogen (N) transformations along an environmental gradient within the Coweeta Hydrologic Laboratory basin in western North Carolina showed a strong seasonal pattern and suggested that vegetation community type through its influence on soil properties-was an important regulating factor. Our objective was to determine the relative effects of biotic vs. abiotic factors on soil N transformations. During the 1999 and 2000 growing seasons we transplanted soil cores from each of the five gradient plots to all other gradient plots for their 28-day in situ incubation. N mineralization and nitrification rates in soils from the northern hardwood (NH) site were significantly increased when soils were transplanted to warmer sites. N mineralization rates also increased in transplanted soil from the dry mixed-oak/pine site to a wetter site. Multiple regression analysis of N mineralization from all five sites found that biotic (total soil N and C:N ratios) and climatic factors (moisture and temperature) regulate N mineralization. Regression analyses of individual sites showed that N mineralization rates responded to variation in temperature and moisture at only the high elevation northern hardwood site and moisture alone on the dry warm mixed-oak1 pine site. N mineralization was unrelated to temperature or moisture at any of the other sites. Results indicate that soil properties plus climatic conditions affect soil N transformations along the environmental gradient at Coweeta. Environmental controls were significant only at the extreme sites; i.e., at the wettest and warmest sites and soils with highest and lowest C and N contents. The high degree of temperature sensitivity for the northern hardwood soils indicates potentially large responses to climatic change at these sites.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Knoepp, Jennifer d.; Vose, James M. 2007. Regulation of nitrogen mineralization and nitrification in Southern Appalachian ecosystems: separating the relative importance of biotic vs. abiotic controls. Pedobiologia, Vol. 51: 89-97


    Forest soil, nitrogen availability, nitrogen transformations, elevation gradient, soil temperature, soil moisture, Q10

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page