Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Mark Coleman
    Date: 2007
    Source: Plant Soil, Vol. 299: 195-213
    Publication Series: Scientific Journal (JRNL)
    PDF: Download Publication  (3.04 MB)


    In forest trees, roots mediate such significant carbon fluxes as primary production and soil C02 efflux. Despite the central role of roots in these critical processes, information on root distribution during stand establishment is limited, yet must be described to accurately predict how various forest types, which are growing with a range of resource limitations, might respond to environmental change. This study reports root length density and biomass development in young stands of eastern cottonwood (Populus deltoidies Bartr.) and American sycamore (Platanus occidentalis L.) that have narrow, high resource site requirements, and compares them with sweetgum (Liquidambar styraciflua L.) and loblolly pine (Pinus taeda L.), which have more robust site requirements. Fine roots (<1 mm), medium roots (1 to 5 mm) and coarse roots (>5 mm) were sampled to determine spatial distribution in response to fertilizer and irrigation treatments delivered through drip irrigation tubes. Root length density and biomass were predominately controlled by stand development, depth and proximity to drip tubes. After accounting for this spatial and temporal variation, there was a significant increase in RLD with fertilization and irrigation for all genotypes. The response to fertilization was greater than that of irrigation. Both fine and coarse roots responded positively to resources delivered through the drip tube, indicating a wholeroot- system response to resource enrichment and not just a feeder root response. The plastic response to drip tube water and nutrient enrichment demonstmte the capability of root systems to respond to supply heterogeneity by increasing acquisition surface. Fineroot biomass, root density and specific root length were greater for broadleaved species than pine. Roots of all genotypes explored the rooting volume within 2 years, but this occurred faster and to higher root length densities in broadleaved species, indicating they had greater initial opportunity for resource acquisition than pine. Sweetgum's root characteristics and its response to resource availability were similar to the other broadleaved species, despite its hnctional resemblance to pine regarding robust site requirements. It was concluded that genotypes, irrigation arid fertilization significantly influenced tree root system development, which varied spatially in response to resource-supply heterogeneity created by dnp tubes. Knowledge of spatial and temporal patterns of root distribution in these stands will be used to interpret nutrient acquisition and soil respiration measurements.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Coleman, Mark. 2007. Spatial and temporal patterns of root distribution in developing stands of four woody crop species grown with drip irrigation and fertilization. Plant Soil, Vol. 299: 195-213


    functional groups, root length density, soil heterogeneity, stand development, vertical root distribution, woody crops

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page