Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Creighton M. Litton; James W. Raich; Michael G. Ryan
    Date: 2007
    Source: Global Change Biology. 13: 2089-2109.
    Publication Series: Scientific Journal (JRNL)
    Station: Rocky Mountain Research Station
    PDF: View PDF  (267.12 KB)

    Description

    Carbon allocation plays a critical role in forest ecosystem carbon cycling. We reviewed existing literature and compiled annual carbon budgets for forest ecosystems to test a series of hypotheses addressing the patterns, plasticity, and limits of three components of allocation: biomass, the amount of material present; flux, the flow of carbon to a component per unit time; and partitioning, the fraction of gross primary productivity (GPP) used by a component. Can annual carbon flux and partitioning be inferred from biomass? Our survey revealed that biomass was poorly related to carbon flux and to partitioning of photosynthetically derived carbon, and should not be used to infer either. Are component fluxes correlated? Carbon fluxes to foliage, wood, and belowground production and respiration all increased linearly with increasing GPP (a rising tide lifts all boats). Autotrophic respiration was strongly linked to production for foliage, wood and roots, and aboveground net primary productivity and total belowground carbon flux (TBCF) were positively correlated across a broad productivity gradient. How does carbon partitioning respond to variability in resources and environment? Within sites, partitioning to aboveground wood production and TBCF responded to changes in stand age and resource availability, but not to competition (tree density). Increasing resource supply and stand age, with one exception, resulted in increased partitioning to aboveground wood production and decreased partitioning to TBCF. Partitioning to foliage production was much less sensitive to changes in resources and environment. Overall, changes in partitioning within a site in response to resource supply and age were small (o15% of GPP), but much greater than those inferred from global relationships. Across all sites, foliage production plus respiration, and total autotrophic respiration appear to use relatively constant fractions of GPP - partitioning to both was conservative across a broad range of GPP - but values did vary across sites. Partitioning to aboveground wood production and to TBCF were the most variable - conditions that favored high GPP increased partitioning to aboveground wood production and decreased partitioning to TBCF. Do priorities exist for the products of photosynthesis? The available data do not support the concept of priorities for the products of photosynthesis, because increasing GPP increased all fluxes. All facets of carbon allocation are important to understanding carbon cycling in forest ecosystems. Terrestrial ecosystem models require information on partitioning, yet we found few studies that measured all components of the carbon budget to allow estimation of partitioning coefficients. Future studies that measure complete annual carbon budgets contribute the most to understanding carbon allocation.

    Publication Notes

    • You may send email to rmrspubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Litton, Creighton M. ; Raich, James W.; Ryan, Michael G. 2007. Carbon allocation in forest ecosystems. Global Change Biology. 13: 2089-2109.

    Keywords

    aboveground net primary productivity (ANPP), annual carbon budget, autotrophic respiration (R), belowground net primary productivity (BNPP), biomass, carbon flux and partitioning, gross primary productivity (GPP), total belowground carbon flux (TBCF)

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page