Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Emily K. Heyerdahl; Penelope Morgan; James P. Riser
    Date: 2008
    Source: Ecology. 89(3): 705-716.
    Publication Series: Scientific Journal (JRNL)
    Station: Rocky Mountain Research Station
    PDF: View PDF  (272.28 KB)

    Description

    Our objective was to infer the climate drivers of regionally synchronous fire years in dry forests of the U.S. northern Rockies in Idaho and western Montana. During our analysis period (1650-­1900), we reconstructed fires from 9245 fire scars on 576 trees (mostly ponderosa pine, Pinus ponderosa P. & C. Lawson) at 21 sites and compared them to existing tree-ring reconstructions of climate (temperature and the Palmer Drought Severity Index [PDSI]) and large-scale climate patterns that affect modern spring climate in this region (El Niño-­Southern Oscillation [ENSO] and the Pacific Decadal Oscillation [PDO]). We identified 32 regional-fire years as those with five or more sites with fire. Fires were remarkably widespread during such years, including one year (1748) in which fires were recorded at 10 sites across what are today seven national forests plus one site on state land. During regional-fire years, spring-­summers were significantly warm and summers were significantly warm-dry whereas the opposite conditions prevailed during the 99 years when no fires were recorded at any of our sites (no-fire years). Climate in prior years was not significantly associated with regional- or no-fire years. Years when fire was recorded at only a few of our sites occurred under a broad range of climate conditions, highlighting the fact that the regional climate drivers of fire are most evident when fires are synchronized across a large area. No-fire years tended to occur during La Niña years, which tend to have anomalously deep snowpacks in this region. However, ENSO was not a significant driver of regional-fire years, consistent with the greater influence of La Niña than El Niño conditions on the spring climate of this region. PDO was not a significant driver of past fire, despite being a strong driver of modern spring climate and modern regional-fire years in the northern Rockies.

    Dataset for this publication

    Publication Notes

    • You may send email to rmrspubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Heyerdahl, Emily K.; Morgan, Penelope; Riser, James P., II 2008. Multi-season climate synchronized historical fires in dry forests (1650-1900), Northern Rockies, USA. Ecology. 89(3): 705-716.

    Keywords

    dendrochronology, El Niño-­Southern Oscillation, fire history, fire scars, Idaho, Montana, Pacific Decadal Oscillation, Palmer Drought Severity Index, spring, summer, temperature

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page