Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): LI YIQING; MING XU; ZOU XIAOMING; PEIJUN SHI§; YAOQI ZHANG
    Date: 2005
    Source: Global Change Biology 11,: 239–248, doi: 10.1111/j.1365-2486.2005.00896.x
    Publication Series: Miscellaneous Publication
    PDF: View PDF  (0 B)

    Description

    We compared the soil carbon dynamics between a pine plantation and a secondary forest, both of which originated from the same farmland abandoned in 1976 with the same cropping history and soil conditions, in the wet tropics in Puerto Rico from July 1996 to June 1997. We found that the secondary forest accumulated the heavy-fraction organic carbon (HF-OC) measured by the density fractionation technique, more efficiently than the tree plantation did. Although there was no significant difference in total soil organic carbon (SOC) between the plantation (5.59  0.09 kgm2) and the secondary forest (5.68  0.16 kgm2), the proportion of HF-OC carbon to the total SOC was significantly higher in the secondary forest (61%) than in the plantation (45%) (Po0.05). Forest floor mass and aboveground litterfall in the plantation were 168% and 22.8% greater than those in the secondary forest, respectively, while the decomposition rate of leaf litter in the plantation was 23.3% lower than that in the secondary forest. The annual mean soil respirations in the plantation and the secondary forest were 2.32  0.15 and 2.65  0.18 gCm2 day1, respectively, with a consistently higher rate in the secondary forest than in the plantation throughout the year. Microbial biomass measured by fumigation–incubation method demonstrated a strong seasonal variation in the secondary forest with 804mgkg1 in the wet season and 460mgkg1 in the dry season. However, the seasonal change of microbial biomass in the plantation was less significant. Our results suggested that secondary forests could stock more long-term SOC than the plantations in the wet tropics because the naturally generated secondary forest accumulated more HF-OC than the managed plantation.

    Publication Notes

    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    YIQING, LI; XU, MING; ZOU XIAOMING; SHI§, PEIJUN; ZHANG, YAOQI. 2005. Comparing soil organic carbon dynamics in plantation and secondary forest in wet tropics in Puerto Rico. Global Change Biology 11,: 239–248, doi: 10.1111/j.1365-2486.2005.00896.x

    Keywords

    decomposition, litterfall, long-term carbon, microbial biomass, soil carbon, soil respiration

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/30083