Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Michael A. Lefsky; David J. Harding; Michael KellerWarren B. Cohen; Claudia C. Carabajal; Fernando Del Bom Espirito-Santo; Maria O. Hunter; Raimundo de Oliveira Jr.
    Date: 2005
    Source: GEOPHYSICAL RESEARCH LETTERS, VOL. 32, L22S02, doi:10.1029/2005GL023971,
    Publication Series: Miscellaneous Publication
    PDF: View PDF  (171 B)

    Description

    Exchange of carbon between forests and the atmosphere is a vital component of the global carbon cycle. Satellite laser altimetry has a unique capability for estimating forest canopy height, which has a direct and increasingly well understood relationship to aboveground carbon storage. While the Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud and land Elevation Satellite (ICESat) has collected an unparalleled dataset of lidar waveforms over terrestrial targets, processing of ICESat data to estimate forest height is complicated by the pulse broadening associated with large-footprint, waveform-sampling lidar. We combined ICESat waveforms and ancillary topography from the Shuttle Radar Topography Mission to estimate maximum forest height in three ecosystems; tropical broadleaf forests in Brazil, temperate broadleaf forests in Tennessee, and temperate needleleaf forests in Oregon. Final models for each site explained between 59% and 68% of variance in field-measured forest canopy height (RMSE between 4.85 and 12.66 m). In addition, ICESat-derived heights for the Brazilian plots were correlated with field-estimates of aboveground biomass (r2 = 73%, RMSE = 58.3 Mgha1).

    Publication Notes

    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Lefsky, Michael A.; Harding, David J.; Keller, Michael; Cohen, Warren B.; Carabajal, Claudia C.;Del Bom Espirito-Santo, Fernando; Hunter, Maria O.; de Oliveira Jr., Raimundo. 2005. Estimates of forest canopy height and aboveground biomass using ICESat. GEOPHYSICAL RESEARCH LETTERS, VOL. 32, L22S02, doi:10.1029/2005GL023971,

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/30084