Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub

    Description

    Selective logging is a dominant form of land use in the Amazon basin and throughout the humid tropics, yet little is known about the spatial variability of forest canopy gap formation and closure following timber harvests. We established chronosequences of large-area (14–158 ha) selective logging sites spanning a 3.5-year period of forest regeneration and two distinct harvest methods: conventional logging (CL) and reducedimpact logging (RIL). Our goals were to: (1) determine the spatial characteristics of canopy gap fraction immediately following selective logging in the eastern Amazon; (2) determine the degree and rate of canopy closure in early years following harvest among the major landscape features associated with logging – tree falls, roads, skid trails and log decks; and (3) quantify spatial and temporal differences in canopy opening and closure in high- and low-damage harvests (CL vs. RIL). Across a wide range of harvest intensities (2.6–6.4 felled trees ha1), the majority of ground damage occurred as skid trails (4–12%), whereas log decks and roads were only a small contributor to the total ground damage (o2%). Despite similar timber harvest intensities, CL resulted in more ground damage than RIL. Neither the number of log decks nor their individual or total area was correlated with the number of trees removed or intensity of tree harvesting (trees ha1). The area of skids was well correlated with the ground area damaged (m2) per tree felled. In recently logged forest (0.5 years postharvest), gap fractions were highest in log decks (mean RIL50.83, CL50.99) and lowest in tree-fall areas (RIL: 0.26, CL: 0.41). However, the small surface area of log decks made their contribution to the total areaintegrated forest gap fraction minor. In contrast, tree falls accounted for more than twothirds of the area disturbed, but the canopy gaps associated with felled trees were much smaller than for log decks, roads and skids. Canopy openings decreased in size with distance from each felled tree crown. At 0.5 years postharvest, the area initially affected by the felling of each tree was approximately 100m in radius for CL and 50m for RIL. Initial decreases in gap fraction during the first 1.5 years of regrowth diminished in subsequent years. Throughout the 3.5-year period of forest recovery, tree-fall gap fractions remained higher in CL than in RIL treatments, but canopy gap closure rates were higher in CL than in RIL areas. During the observed recovery period, the canopy gap area affected by harvesting decreased in radius around each felled tree from 100 to 40m in CL, and from 50 to 10m in RIL. The results suggest that the full spatial and temporal dynamics of canopy gap fraction must be understood and monitored to predict the effects of selective logging on regional energy balance and climate regimes, biogeochemical processes including carbon cycling, and plant and faunal population dynamics. This paper also shows that remote sensing of log decks alone will not provide an accurate assessment of total forest area impacted by selective logging, nor will it be closely correlated to damage levels and canopy gap closure rates.

    Publication Notes

    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    ASNER, GREGORY P.; KELLER, MICHAEL; SILVA, JOSEN M. 2004. Spatial and temporal dynamics of forest canopy gaps following selective logging in the eastern Amazon. Global Change Biology 10, :765–783

    Keywords

    Amazon basin, Brazil, canopy damage, carbon cycle, forest recovery, gap fraction, selective logging, tropical forest.

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page