Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): J. Schellekens; F. N. Scatena; L.A. Bruijnzee; A. I. J. M. van Dijk; M. M. A. Groen; R. J. P. van Hogezand
    Date: 2004
    Source: Hydrol. Process. 18, 505–530
    Publication Series: Miscellaneous Publication
    PDF: View PDF  (376 B)

    Description

    Various complementary techniques were used to investigate the stormflow generating processes in a small headwater catchment in northeastern Puerto Rico. Over 100 samples were taken of soil matrix water, macropore flow, streamflow and precipitation, mainly during two storms of contrasting magnitude, for the analysis of calcium, magnesium, silicon, potassium, sodium and chloride. These were combined with hydrometric information on streamflow, return flow, precipitation, throughfall and soil moisture to distinguish water following different flow paths. Geo-electric sounding was used to survey the subsurface structure of the catchment, revealing a weathering front that coincided with the elevation of the stream channel instead of running parallel to surface topography. The hydrometric data were used in combination with soil physical data, a one-dimensional soil water model (VAMPS) and a three-component chemical mass-balance mixing model to describe the stormflow response of the catchment. It is inferred that most stormflow travelled through macropores in the top 20 cm of the soil profile. During a large event, saturation overland flow also accounted for a considerable portion of the stormflow, although it was not possible to quantify the associated volume fully. Although the mass-balance mixing model approach gave valuable information about the various flow paths within the catchment, it was not possible to distill the full picture from the model alone; additional hydrometric and soil physical evidence was needed to aid in the interpretation of the model results

    Publication Notes

    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Schellekens,J.; Scatena, F. N.; Bruijnzee, L.A.; van Dijk, A. I. J. M.; Groen, M. M. A.; van Hogezand, R. J. P. 2004. Stormflow generation in a small rainforest catchment in the Luquillo Experimental Forest, Puerto Rico. Hydrol. Process. 18, 505–530

    Keywords

    runoff generation, rainforest, chemical mixing model, soil water model, geo-electrical survey­

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/30207