Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Shiqin Xu; C.G. Tauer; C. Dana Nelson
    Date: 2008
    Source: Tree Genetics & Genomes 10 p.
    Publication Series: Scientific Journal (JRNL)
    PDF: Download Publication  (392 KB)


    Shortleaf and loblolly pine trees (n=93 and 102, respectively) from 22 seed sources of the Southwide Southern Pine Seed Source Study plantings or equivalent origin were evaluated for amplified fragment length polymorphism (AFLP) variation. These sampled trees represent shortleaf pine and loblolly pine, as they existed across their native geographic ranges before intensive forest management. Using 17 primer pairs, a total of 96 AFLPs between shortleaf pine and loblolly pine were produced and scored on the sample trees and two control-pollinated F1 interspecies hybrids and their parents. In addition, the well known isocitrate dehydrogenase (IDH) isozyme marker was scored for all trees. IDH detected two putative hybrids among the loblolly pine samples and two among the shortleaf pine samples, while either 13 or 12 putative hybrids were detected using all AFLP markers and IDH and either New Hybrids or Structure software, respectively. Results of this study show that later generation hybrids can be reliably identified using AFLP markers and confirmed that IDH is not a definitive marker for detecting hybrids; that is, at least in some seed sources, the alternative species’ IDH allele resides in the source species. Based on all the markers, hybridization frequency varied geographically, ranging from 30% in an Arkansas seed source to 0% in several other seed sources. The hybridization level was higher in populations west of the Mississippi River than in populations east of the river; the shortleaf pine hybridization rates were 16.3% and 2.4% and the loblolly pine rates were 4.5% and 3.3%, west and east of the river, respectively. The results suggest that hybridization between these two species is significant but varies by seed source and species, and the potential for the unintended creation of hybrids should be considered in forest management decisions regarding both natural and artificial regeneration.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Xu, Shiqin; Tauer, C.G.; Nelson, C. Dana. 2008. Natural hybridization within seed sources of shortleaf pine (Pinus echinata Mill.) and loblolly pine (Pinus taeda L.). Tree Genetics & Genomes 10 p.


    Genetic diversity

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page