Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): John F. HuntHongmei GuPatricia Lebow
    Date: 2008
    Source: Wood and fiber science. Vol. 40, no. 2 (Apr. 2008): Pages 167-180
    Publication Series: Miscellaneous Publication
    PDF: View PDF  (577 KB)

    Description

    The anisotropy of wood creates a complex problem requiring that analyses be based on fundamental material properties and characteristics of the wood structure to solve heat transfer problems. A two-dimensional finite element model that evaluates the effective thermal conductivity of a wood cell over the full range of moisture contents and porosities was previously developed, but its dependence on software limits its use. A statistical curve-fit to finite-element results would provide a simplified expression of the model’s results without the need for software to interpolate values. This paper develops an explicit equation for the values from the finite-element thermal conductivity analysis. The equation is derived from a fundamental equivalent resistive-circuit model for general thermal conductivity problems. Constants were added to the equation to improve the regression-fit for the resistive model. The equation determines thermal conductivity values for the full range of densities and moisture contents. This new equation provides thermal conductivity values for uniform-density wood material using inputs of only oven-dry density and moisture content. An explicit method for determining thermal conductivity of uniform density wood cells has potential uses for many wood applications.

    Publication Notes

    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Hunt, John F.; Gu, Hongmei; Lebow, Patricia. 2008. Theoretical thermal conductivity equation for uniform density wood cells. Wood and Fiber Science 40(2): 167-180

    Keywords

    Resistive-circuit modeling, wood cell, thermal conductivity, moisture content, heat transfer, cellular structure, finite element modeling, anisotropy, mathematical models, softwood, porosity, thermal properties, heat transmission, heat flux, wood density, mass transfer, earlywood, latewood

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/31172