Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub

    Description

    Bromus tectorum (cheatgrass) is an invasive annual that occupies perennial grass and shrub communities throughout the western United States. Bromus tectorum exhibits an intriguing spatio-temporal pattern of invasion in low elevation ponderosa pine Pinus ponderosa/bunchgrass communities in western Montana where it forms dense rings beneath solitary pines following fire. This pattern provides a unique opportunity to investigate several indirect effects of native vegetation that influence the invasion pattern of B. tectorum, and specifically how native species, disturbance, and soil resources interact to influence the spatio-temporal pattern of invasion. We established four replicate field sites, each containing burned-tree, burned-grass, unburned-tree, and unburned-grass sampling locations, and initiated a series of field sampling and greenhouse experiments utilizing these locations. The objective of our first greenhouse experiment was to identify whether belowground factors contributed to the pattern of B. tectorum biomass observed in these field locations. This experiment generated a B. tectorum biomass response that was nearly identical to the invasion pattern observed in the field, suggesting further investigation of belowground factors was necessary. We measured resin-sorbed NH4+ and NO3- during one generation of B. tectorum, and measured a suite of P fractions through a sequential extraction procedure from these soils. These data revealed that a resource island of high N and P exists beneath pine trees. Through a second greenhouse experiment, we determined that N limited B. tectorum biomass in tree soil, whereas P limited biomass in bunchgrass soil. Finally, through a germination experiment we determined that pine litter strongly inhibited B. tectorum germination. These data suggest B. tectorum is regulated by P in bunchgrass soil, and by N and inhibition by pine litter beneath trees, effects that are likely alleviated by fire. These data demonstrate the combined role of direct and indirect interactions between native and invasive species in regulating biological invasions.

    Publication Notes

    • You may send email to rmrspubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Gundale, Michael J.; Sutherland, Steve; DeLuca, Thomas H.; and others. 2008. Fire, native species, and soil resource interactions influence the spatio-temporal invasion pattern of Bromus tectorum. Ecography. 31(2): 201-210.

    Keywords

    fire, native species, soil resource, spatio-temporal invasion, cheatgrass, Bromus tectorum, bunchgrass

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/31573