Skip to main content
U.S. flag

An official website of the United States government

Misclassification bias in areal estimates



Publication type:

Scientific Journal (JRNL)

Primary Station(s):

Rocky Mountain Research Station


Photogrammetric Engineering and Remote Sensing. 58(2): 189-192


In addition to thematic maps, remote sensing provides estimates of area in different thematic categories. Areal estimates are frequently used for resource inventories, management planning, and assessment analyses. Misclassification causes bias in these statistical areal estimates. For example, if a small percentage of a common cover type is misclassified as a rare cover type, then the area occupied by the rare type can be severely overestimated. Many categories are rare in detailed classification systems. I present an informal method to anticipate the approximate magnitude of this bias in statistical areal estimates, before a remote sensing study is conducted. If the anticipated magnitude is unacceptable, then statistical calibration methods should be used to produce unbiased areal estimates. I then discuss existing statistical methods that calibrate for misclassification bias with a sample of reference plots.


Czaplewski, Raymond L. 1992. Misclassification bias in areal estimates. Photogrammetric Engineering and Remote Sensing. 58(2): 189-192.

Publication Notes

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.