Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Ines Ibanez; James S. Clark; Shannon LaDeau; Janneke Hill Ris Lambers
    Date: 2007
    Source: Ecological Monographs, Vol. 77(2): 163-177
    Publication Series: Miscellaneous Publication
    PDF: View PDF  (1.64 MB)

    Description

    Predicting vegetation shifts under climate change is a challenging endeavor, given the complex interactions between biotic and abiotic variables that influence demographic rates. To determine how current trends and variation in climate change affect seedling establishment, we analyzed demographic responses to spatiotemporal variation to temperature and soil moisture in the southern Appalachian Mountains. We monitored seedling establishment for 10 years in five plots located along an elevational gradient of five dominant tree species: Acer rubrum, Betula spp., Liriodendron tulipifera , Nyssa sylvatica, and Quercus rubra. A hierarchical Bayes model allowed us to incorporate different sources of information, observation errors, and the inherent variability of the establishment process. From our analysis, spring temperatures and heterogeneity in soil moisture emerge as key drivers, and they act through nonlinear popUlation demographic processes. We found that all species benefited from warmer springs, in particular the species found on dry slopes, N. sylvatica, and those dominant at higher elevations, Betula spp. and Q. rubra. This last species also benefited from dry environments. Conversely, L. tulipijera, which is abundant on mesic sites, experienced highest establishment rates at high moisture. The mechanisms behind these results may differ among species. Higher temperatures are apparently more important for some, while dry conditions and reduced pathogenic attacks on their seeds and new seedlings have a large impact for others. Our results suggest that only communities found at higher elevations are in danger of regional extinction when their habitats disappear given the current climatic trends. We conclude that the recruitment dynamics of the communities where these species are dominant could be affected by minor changes in climate in ways that cannot be predicted using only climate envelopes, which use different variables and miss the nonlinearities.

    Publication Notes

    • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Ibanez, Ines; Clark, James S.; LaDeau, Shannon; Lambers, Janneke Hill Ris 2007. Exploiting temporal variability to understand tree recruitment response to climate change. Ecological Monographs, Vol. 77(2): 163-177

    Keywords

    climate change, climate envelopes, establishment, hierarchical bayes, recruitment, seedlings, Southern Appalachians

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page