Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): D. Max Smith; Jeffrey Kelly; Deborah M. Finch
    Date: 2006
    Source: Ecological Applications. 16(4): 1608-1618.
    Publication Series: Scientific Journal (JRNL)
    Station: Rocky Mountain Research Station
    PDF: Download Publication  (174.0 KB)


    Annually emerging cicadas are a numerically and ecologically dominant species in Southwestern riparian forests. Humans have altered disturbance regimes that structure these forests such that floods are less common and wildfires occur more frequently than was historically the case. Impacts of these changes on primary consumers such as riparian cicadas are unknown. Because cicadas are consumed by a variety of animal species, disturbances that alter timing of their emergence or abundance could have consequences for species at higher trophic levels. We trapped emerging cicadas (Tibicen dealbatus) in burned and unburned riparian forest plots along the Middle Rio Grande in central New Mexico (USA) to determine effects of wildfire and vegetation structure on their density and phenology. We measured vegetation variables and soil temperature at cicada traps and related these variables to variation in emergence density and phenology. We also experimentally heated soil under emergence traps to examine the relationship between soil temperature and emergence phenology. Emergence density was similar in wildfire and unburned plots, though emergence date averaged earlier in wildfire plots and experimentally heated traps. We identified models containing cottonwood proximity (distance from the nearest cottonwood tree) and cottonwood canopy coverage as the most parsimonious explanations of emergence density at each trap. Model selection results were consistent with the literature and field observations that showed that cottonwood trees are an essential resource for T. dealbatus. Cottonwood canopy was also correlated with low soil temperatures, which are associated with later emergence dates. Failure of cottonwoods to reestablish following wildfire could result in cicadas emerging at lower densities and at earlier dates. For cicadas to emerge at densities and times that provide the greatest benefits to birds and other riparian-obligate secondary consumers, riparian forests should be protected from fire, and native vegetation in wildfire sites should be restored.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Smith, D. Max; Kelly, Jeffrey; Finch, Deborah M. 2006. Cicada emergence in southwestern riparian forest: Influences of wildfire and vegetation composition. Ecological Applications. 16(4): 1608-1618.


    Akaike's Information Criterion, annual cicada emergence, Middle Rio Grande, riparian vegetation, Tibicen dealbatus, vegetation structure, wildfire

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page