Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub


    Variance approximations are derived for the weighted and unweighted kappa statistics, the conditional kappa statistic, and conditional probabilities. These statistics are useful to assess classification accuracy, such as accuracy of remotely sensed classifications in thematic maps when compared to a sample of reference classifications made in the field. Published variance approximations assume multinomial sampling errors, which implies simple random sampling where each sample unit is classified into one and only one mutually exclusive category with each of two classification methods. The variance approximations in this paper are useful for more general cases, such as reference data from multiphase or cluster sampling. As an example, these approximations are used to develop variance estimators for accuracy assessments with a stratified random sample of reference data.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Czaplewski, R. L. 1994. Variance approximations for assessments of classification accuracy. Res. Pap. RM-RP-316. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 29 p.


    Google Scholar


    Kappa, remote sensing, photo-interpretation, stratified random sampling, cluster sampling, multiphase sampling, multivariate composite estimation, reference data, agreement

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page