Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): J. J. McDonnell; M. Sivapalan; K. Vache; S. Dunn; G. Grant; R. Haggerty; C. Hinz; R. Hooper; J. Kirchner; M.L. Roderick; J. Selker; M. Weiler
    Date: 2007
    Source: Water Resources Research, Vol. 43, 6 p.
    Publication Series: Scientific Journal (JRNL)
    PDF: Download Publication  (1.9 MB)


    Field studies in watershed hydrology continue to characterize and catalogue the enormous heterogeneity and complexity of rainfall runoff processes in more and more watersheds, in different hydroclimatic regimes, and at different scales. Nevertheless, the ability to generalize these findings to ungauged regions remains out of reach. In spite of their apparent physical basis and complexity, the current generation of detailed models is process weak. Their representations of the internal states and process dynamics are still at odds with many experimental findings. In order to make continued progress in watershed hydrology and to bring greater coherence to the science, we need to move beyond the status quo of having to explicitly characterize or prescribe landscape heterogeneity in our (highly calibrated) models and in this way reproduce process complexity and instead explore the set of organizing principles that might underlie the heterogeneity and complexity. This commentary addresses a number of related new avenues for research in watershed science, including the use of comparative analysis, classification, optimality principles, and network theory, all with the intent of defining, understanding, and predicting watershed function and enunciating important watershed functional traits.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    McDonnell, J. J.; Sivapalan, M.; Vache, K.; Dunn, S.; Grant, G.; Haggerty, R.; Hinz, C.; Hopoer, R.; Kirchner, J.; Roderick, M. L.; Selker, J.; Weiler, M. 2007. Moving beyond heterogeneity and process complexity: A new vision for watershed hydrology. Water Resources Research. 43: 6 p.


    Google Scholar


    Watershed function, modeling

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page