Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub

    Description

    Recent studies predict that projected climate change will lead to significant reductions in summer streamflow in the mountainous regions of the Western United States. Hydrologic modeling directed at quantifying these potential changes has focused on the magnitude and timing of spring snowmelt as the key control on the spatial temporal pattern of summer streamflow. We illustrate how spatial differences in groundwater dynamics can also play a significant role in determining streamflow responses to warming. We examine two contrasting watersheds, one located in the Western Cascades and the other in the High Cascades mountains of Oregon. We use both empirical analysis of streamflow data and physically based, spatially distributed modeling to disentangle the relative importance of multiple and interacting controls. In particular, we explore the extent to which differences in snow accumulation and melt and drainage characteristics (deep groundwater vs. shallow subsurface) mediate the effect of climate change. Results show that within the Cascade Range, local variations in bedrock geology and concomitant differences in volume and seasonal fluxes of subsurface water will likely result in significant spatial variability in responses to climate forcing. Specifically, watersheds dominated by High Cascade geology will show greater absolute reductions in summer streamflow with predicted temperature increases.

    Publication Notes

    • You may send email to pnw_pnwpubs@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Tague, Christina; Grant, Gordon; Farrell, Mike; Choate, Janet; Jefferson, Anne. 2008. Deep groundwater mediates streamflow response to climate warming in the Oregon Cascades. Climatic Change. 86: 189-210

    Cited

    Google Scholar

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page