Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Francis Roesch
    Date: 2009
    Source: In: McWilliams, Will; Moisen, Gretchen; Czaplewski, Ray, comps. Forest Inventory and Analysis (FIA) Symposium 2008; October 21-23, 2008; Park City, UT. Proc. RMRS-P-56CD. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 20 p.
    Publication Series: Proceedings (P)
    Station: Rocky Mountain Research Station
    PDF: View PDF  (413.59 KB)

    Description

    The consumers of data derived from extensive forest inventories often seek annual estimates at a finer spatial scale than that which the inventory was designed to provide. This paper discusses a few model-based and model-assisted estimators to consider for county level attributes that can be applied when the sample would otherwise be inadequate for producing low-variance estimates in the smaller counties. I present and demonstrate simple spatial and/or temporal estimators that draw strength from neighboring counties and/or years in order to increase confidence in the county level annual estimates. The spatial estimators are restricted to those that do not require knowledge of exact plot locations in order to enable their use with privacy protected, publicly available data. A series of simulations is used to compare and contrast the performance of these estimators relative to position in the time series of interest under various variance prescriptions. Although none of the estimators is shown to be superior in terms of minimum mean squared error (MSE) overall, a few general conclusions are drawn. The first is that estimators that draw strength through consecutive measurements of the same set of field plots show a significant reduction in MSE under a wider variety of circumstances than those that draw strength from plots in neighboring counties. The second conclusion is that of the estimators that rely on a temporal model, a simple, centralized weight-adjusted moving average (with weights specific to time-series position) often was the most robust.

    Publication Notes

    • You may send email to rmrspubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Roesch, Francis A. Spatial-temporal models for improved county-level annual estimates. 2009. In: McWilliams, Will; Moisen, Gretchen; Czaplewski, Ray, comps. Forest Inventory and Analysis (FIA) Symposium 2008; October 21-23, 2008; Park City, UT. Proc. RMRS-P-56CD. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 20 p.

    Keywords

    small-area estimation, weighted moving average, mixed estimation, forest inventory

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page