Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): M.D. Bryant
    Date: 2009
    Source: Climatic Change, Vol. 95: 169-193
    Publication Series: Scientific Journal (JRNL)
    PDF: View PDF  (623.35 KB)

    Description

    General circulation models predict increases in air temperatures from 1◦C to 5◦C as atmospheric CO2 continues to rise during the next 100 years. Thermal regimes in freshwater ecosystems will change as air temperatures increase regionally. As air temperatures increase, the distribution and intensity of precipitation will change which will in turn alter freshwater hydrology. Low elevation floodplains and wetlands will flood as continental ice sheets melt, increasing sea-levels. Although anadromous salmonids exist over a wide range of climatic conditions along the Pacific coast, individual stocks have adapted life history strategies—time of emergence, run timing, and residence time in freshwater—that are often unique to regions and watersheds. The response of anadromous salmonids will differ among species depending on their life cycle in freshwater. For pink and chum salmon that migrate to the ocean shortly after they emerge from the gravel, higher temperatures during spawning and incubation may result in earlier entry into the ocean when food resources are low. Shifts in thermal regimes in lakes will change trophic conditions that will affect juvenile sockeye salmon growth and survival. Decreased summer stream flows and higher water temperatures will affect growth and survival of juvenile coho salmon. Rising sea-levels will inundate low elevation spawning areas for pink salmon and floodplain rearing habitats for juvenile coho salmon. Rapid changes in climatic conditions may not extirpate anadromous salmonids in the region, but they will impose greater stress on many stocks that are adapted to present climatic conditions. Survival of sustainable populations will depend on the existing genetic diversity within and among stocks, conservative harvest management, and habitat conservation.

    Publication Notes

    • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Bryant, M.D. 2009. Global climate change and potential effects on pacific salmonids in freshwater ecosystems of southeast Alaska. Climatic Change 95:169-193.

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/33399