Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Emile S. Gardiner; Magnus Lof; Joseph J. O'brien; John A. Stanturf; Palle Madsen
    Date: 2009
    Source: Forest Ecology and Management, Vol. 258: 868-878
    Publication Series: Scientific Journal (JRNL)
    Station: Southern Research Station
    PDF: Download Publication  (684.11 KB)


    Efforts inEurope to convertNorway spruce (Picea abies) plantations to broadleaf ormixed broadleaf-conifer forests could be bolstered by an increased understanding of how artificial regeneration acclimates and functions under a range of Norway spruce stand conditions. We studied foliage characteristics and leaflevel photosynthesis on 7-year-old European beech (Fagus sylvatica) and pedunculate oak (Quercus robur) regeneration established in open patches and shelterwoods of a partially harvested Norway spruce plantation in southwestern Sweden. Both species exhibited morphological plasticity at the leaf level by developing leaf blades in patches with an average mass per unit area (LMA) 54% greater than of those in shelterwoods, and at the plant level by maintaining a leaf area ratio (LAR) in shelterwoods that was 78% greater than in patches.However,weobserved interspecific differences in photosynthetic capacity relative to spruce canopy openness. Photosynthetic capacity (A1600, net photosynthesis at a photosynthetic photon flux density of 1600 mmol photons m-2 s-1) of beech in respect to the canopy gradient was best related to leaf mass, and declined substantially with increasing canopy openness primarily because leaf nitrogen (N) in this species decreased about 0.9 mg g-1 with each 10% rise in canopy openness. In contrast, A1600 of oak showed a weak response to mass-based N, and furthermore the percentage of N remained constant in oak leaf tissues across the canopy gradient. Therefore, oak photosynthetic capacity along the canopy gradient was best related to leaf area, and increased as the spruce canopy thinned primarily because LMA rose 8.6 g m-2 for each 10% increase in canopy openness. These findings support the premise that spruce stand structure regulates photosynthetic capacity of beech through processes that determine N status of this species; leaf N (mass basis) was greatest under relatively closed spruce canopies where leaves apparently acclimate by enhancing light harvesting mechanisms. Spruce stand structure regulates photosynthetic capacity of oak through processes that control LMA; LMA was greatest under open spruce canopies of high light availability where leaves apparently acclimate by enhancing CO2 fixation mechanisms.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Gardiner, Emile S.; Lof, Magnus; O'brien, Joseph J.; Stanturf, John A.; Madsen, Palle. 2009. Photosynthetic characteristics of fagus sylvatica and quercus robur established for stand conversion from picea abies. Forest Ecology and Management, Vol. 258: 868-878


    fagus sylvatica, quercus robur, picea abies, photosynthetic light response, nitrogen, canopy cover, regeneration

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page