Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub


    Complete cellulase, an endoglucanase (EGV) with cellulose-binding domain (CBD) and a mutant endoglucanase without CBD (EGI) were utilized for the hydrolysis of a fully bleached reed Kraft pulp sample. The changes of microfibrils on the fiber surface were examined with tapping mode atomic force microscopy (TM–AFM) phase imaging. The results indicated that complete cellulase could either peel the fibrillar bundles along the microfibrils (peeling) or cut microfibrils into short length across the length direction (cutting) during the process. After 24 h treatment, most orientated microfibrils on the cellulose fiber surface were degraded into fragments by the complete cellulase. Incubation with endoglucanase (EGV or EGI) also caused peeling action. But no significant size reduction of microfibrils length was observed, which was probably due to the absence of cellobiohydrolase. The AFM phase imaging clearly revealed that individual EGV particles were adsorbed onto the surface of a cellulose fiber and may be bound to several microfibrils

    Publication Notes

    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Liu, Hao; Fu, Shiyu; Zhu, J.Y.; Li, Hui; Zhan, Huaiyu. 2009. Visualization of enzymatic hydrolysis of cellulose using AFM phase imaging. Enzyme and Microbial Technology. 45: 274-281.


    Plant fibers, ultrastructure, cellulase, microfibrils, cellulose fibers, pulping, chemical reactions, enzymes, biotechnology, industrial applications, hydrolysis, cellulose, sulfate pulping process. topping mode atomic force microscopy, atomic force microscopy, pulp and paper processes, endoglucanase, surface properties

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page