Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub


    Methods for scheduling forest management activities in a spatial pattern (dispersed, clumped, random, and regular) are presented, with the intent to examine the effects of placement of activities on resulting simulated wildfire behavior. Both operational and fuel reduction management prescriptions are examined, and a heuristic was employed to schedule the activities. The main hypothesis is that simulated wildfire effects during a severe fire season may be mitigated by scheduling activities in a pattern across the landscape. Results suggest: (1) operational management prescriptions, designed to promote the development of forest structure within a desired range of stand density, were not appropriate for mitigating wildfire effects, and (2) increased harvest levels obscure spatial patterns of activity, making patterns less clear as harvests increase. Results also suggest that fuel reduction management prescriptions may marginally minimize wildfire severity during a severe fire season, when scheduled in a spatial pattern.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Kim, Young-Hwan; Bettinger, Pete; Finney, Mark. 2009. Spatial optimization of the pattern of fuel management activities and subsequent effects on simulated wildfires. European Journal of Operational Research. 197: 253-265.


    OR in natural resources, heuristics, large scale optimization, forest planning, forest fuels management, combinatorial optimization, fire modeling

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page