Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): R. Stockli; T. Rutishauser; D. Dragoni; J. O'Keefe; P. E. Thornton; M. Jolly; L. Lu; A. S. Denning
    Date: 2008
    Source: Journal of Geophysical Research. 113: G04021, doi:10.1029/2008JG000781.
    Publication Series: Miscellaneous Publication
    PDF: View PDF  (752.21 KB)

    Description

    Predicting the global carbon and water cycle requires a realistic representation of vegetation phenology in climate models. However most prognostic phenology models are not yet suited for global applications, and diagnostic satellite data can be uncertain and lack predictive power. We present a framework for data assimilation of Fraction of Photosynthetically Active Radiation absorbed by vegetation (FPAR) and Leaf Area Index (LAI) from the MODerate Resolution Imaging Spectroradiometer (MODIS) to constrain empirical temperature, light, moisture and structural vegetation parameters of a prognostic phenology model. We find that data assimilation better constrains structural vegetation parameters than climate control parameters. Improvements are largest for drought-deciduous ecosystems where correlation of predicted versus satellite-observed FPAR and LAI increases from negative to 0.7-0.8. Data assimilation effectively overcomes the cloud- and aerosol-related deficiencies of satellite data sets in tropical areas. Validation with a 49-year-long phenology data set reveals that the temperature-driven start of season (SOS) is light limited in warm years. The model has substantial skill (R = 0.73) to reproduce SOS inter-annual and decadal variability. Predicted SOS shows a higher inter-annual variability with a negative bias of 5-20 days compared to species-level SOS. It is however accurate to within 1-2 days compared to SOS derived from net ecosystem exchange (NEE) measurements at a FLUXNET tower. The model only has weak skill to predict end of season (EOS). Use of remote sensing data assimilation for phenology model development is encouraged but validation should be extended with phenology data sets covering mediterranean, tropical and arctic ecosystems.

    Publication Notes

    • You may send email to rmrspubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Stockli, R.; Rutishauser, T.; Dragoni, D.; O'Keefe, J.; Thornton, P. E.; Jolly, M.; Lu, L.; Denning, A. S. 2008. Remote sensing data assimilation for a prognostic phenology model. Journal of Geophysical Research. 113: G04021, doi:10.1029/2008JG000781.

    Keywords

    remote sensing data, prognostic phenology, global carbon and water cycle, climate models

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/33784