Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): John T. Walker; James M. VoseJennifer Knoepp; Christopher D. Geron
    Date: 2009
    Source: Journal of Environmental Quality doi: 10.2134/jeq2008.0259.
    Publication Series: Scientific Journal (JRNL)
    Station: Southern Research Station
    PDF: View PDF  (996.96 KB)

    Description

    Establishment of riparian buffers is an effective method for reducing nutrient input to streams. However, the underlying


    biogeochemical processes are not fully understood. The objective of this 4-yr study was to examine the effects of riparian zone restoration on soil N cycling mechanisms in a mountain pasture previously degraded by cattle. Soil inorganic N pools,


    fluxes, and transformation mechanisms were compared across the following experimental treatments: (i) a restored area with vegetation regrowth; (ii) a degraded riparian area with simulated effects of continued grazing by compaction, vegetation removal, and nutrient addition (+N); and (iii) a degraded riparian area with simulated compaction and vegetation removal only (-N). Soil solution NO3 concentrations and fluxes of inorganic N in overland fl ow were >90% lower in the restored treatment relative to the degraded (+N) treatment. Soil solution NO3 concentrations decreased more rapidly in the restored treatment relative to the degraded (-N) following cattle (Bos taurus) exclusion. Mineralization and nitrifi cation rates in the restored treatment were similar to the degraded (-N) treatment and, on average, 75% lower than in the degraded (+N) treatment. Nitrogen trace gas fl uxes indicated that restoration increased the relative importance of denitrification, relative to nitrification, as a pathway by which N is diverted from the receiving stream to the atmosphere. Changes in soil nutrient cycling mechanisms following restoration of the degraded riparian zone were primarily driven by cessation of N inputs. Th e recovery rate, however, was influenced by the rate of vegetation regrowth.

    Publication Notes

    • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Walker, John T.; Vose, James M.; Knoepp, Jennifer; Geron Christopher D. 2009. Recovery of nitrogen pools and processes in degraded riparian zones in the southern Appalachians. Journal of Environmental Quality. 38: 1391-1399. doi: 10.2134/jeq2008.0259.

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page