Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Simon H. Yueh; Steve J. Dinardo; Ahmed Akgiray; Richard West; Donald W. Cline; Kelly Elder
    Date: 2009
    Source: IEEE Transactions on Geoscience and Remote Sensing. 47(10): 3347-3364.
    Publication Series: Miscellaneous Publication
    PDF: View PDF  (1.52 MB)

    Description

    Characteristics of the Ku-band polarimetric scatterometer (POLSCAT) data acquired from five sets of aircraft flights in the winter months of 2006-2008 for the second Cold Land Processes Experiment (CLPX-II) in Colorado are described in this paper. The data showed the response of the Ku-band radar echoes to snowpack changes for various types of background vegetation in the study site in north central Colorado. We observed about 0.15-0.5-dB increases in backscatter for every 1 cm of snow-waterequivalent (SWE) accumulation for areas with short vegetation (sagebrush and pasture). The region with the smaller amount of biomass, signified by the backscatter in November, seemed to have the stronger backscatter response to SWE in decibels. The data also showed the impact of surface hoar growth and freeze/thaw cycles, which created large snow-grain sizes, ice crust layers, and ice lenses and consequently increased the radar signals by a few decibels. The copolarized HH/VV backscatter ratio seems to indicate double-bounce scattering between the ground surface and snow or vegetation. The cross-polarized backscatter [vertical­horizontal (VH)] showed not only the influence of vegetation but also the strong response to snow accumulation. The observed HV/VV ratio suggests the importance of multiple scattering or nonspherical scattering geometry of snow grain in the dense-media radiative transfer scattering model. Comparison of the POLSCAT and QuikSCAT data was made and confirmed the effects of mixed terrain covers in the coarse-resolution QuikSCAT data.

    Publication Notes

    • You may send email to rmrspubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Yueh, Simon H.; Dinardo, Steve J.; Akgiray, Ahmed; West, Richard; Cline, Donald W.; Elder, Kelly. 2009. Airborn Ku-band polarimetric radar remote sensing of terrestrial snow cover. IEEE Transactions on Geoscience and Remote Sensing. 47(10): 3347-3364.

    Keywords

    microwave remote sensing, radar, snow

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/34068