Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub

    Description

    Landscape ecology often adopts a patch mosaic model of ecological patterns. However, many ecological attributes are inherently continuous and classification of species composition into vegetation communities and discrete patches provides an overly simplistic view of the landscape. If one adopts a nichebased, individualistic concept of biotic communities then it may often be more appropriate to represent vegetation patterns as continuous measures of site suitability or probability of occupancy, rather than the traditional abstraction into categorical community types represented in a mosaic of discrete patches. The goal of this paper is to demonstrate the high effectiveness of species-level, pixel scale prediction of species occupancy as a continuous landscape variable, as an alternative to traditional classified community type vegetation maps. We use a Random Forests ensemble learning approach to predict site-level probability of occurrence for four conifer species based on climatic, topographic and spectral predictor variables across a 3,883 km2 landscape in northern Idaho, USA. Our method uses a new permutated sample-downscaling approach to equalize sample sizes in the presence and absence classes, a model selection method to optimize parsimony, and independent validation using prediction to 10% bootstrap data withhold. The models exhibited very high accuracy, with AUC and kappa values over 0.86 and 0.95, respectively, for all four species. The spatial predictions produced by the models will be of great use to managers and scientists, as they provide vastly more accurate spatial depiction of vegetation structure across this landscape than has previously been provided by traditional categorical classified community type maps.

    Publication Notes

    • You may send email to rmrspubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Evans, Jeffrey S.; Cushman, Samuel A. 2009. Gradient modeling of conifer species using random forests. Landscape Ecology. 24: 673-683.

    Keywords

    predictive modeling, random forests, CART, gradient

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page