Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Diego Martinez; Jean Challacombe; Ingo Morgenstern; David Hibbett; Monika Schmoll; Christian P. Kubicek; Patricia Ferreira; Francisco J. Ruiz-Duenas; Angel T. Martinez; Philip J. KerstenKenneth E. HammelJill A. GaskellDaniel Cullen
    Date: 2009
    Source: Proceedings of the National Academy of Sciences of the USA. Vol. 106, no. 6 (Feb. 10, 2009).
    Publication Series: Miscellaneous Publication
    PDF: View PDF  (975.18 KB)

    Description

    Brown-rot fungi such as Postia placenta are common inhabitants of forest ecosystems and are also largely responsible for the destructive decay of wooden structures. Rapid depolymerization of cellulose is a distinguishing feature of brown-rot, but the biochemical mechanisms and underlying genetics are poorly understood. Systematic examination of the P. placenta genome, transcriptome, and secretome revealed unique extracellular enzyme systems, including an unusual repertoire of extracellular glycoside hydrolases. Genes encoding exocellobiohydrolases and cellulose-binding domains, typical of cellulolytic microbes, are absent in this efficient cellulose-degrading fungus. When P. placenta was grown in medium containing cellulose as sole carbon source, transcripts corresponding to many hemicellulases and to a single putative [Beta]-1–4 endoglucanase were expressed at high levels relative to glucose-grown cultures. These transcript profiles were confirmed by direct identification of peptides by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Also upregulated during growth on cellulose medium were putative iron reductases, quinone reductase, and structurally divergent oxidases potentially involved in extracellular generation of Fe(II) and H2O2. These observations are consistent with a biodegradative role for Fenton chemistry in which Fe(II) and H2O2 react to form hydroxyl radicals, highly reactive oxidants capable of depolymerizing cellulose. The P. placenta genome resources provide unparalleled opportunities for investigating such unusual mechanisms of cellulose conversion. More broadly, the genome offers insight into the diversification of lignocellulose degrading mechanisms in fungi. Comparisons with the closely related white-rot fungus Phanerochaete chrysosporium support an evolutionary shift from white-rot to brown-rot during which the capacity for efficient depolymerization of lignin was lost.

    Publication Notes

    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Martinez, Diego; Challacombe, Jean; Morgenstern, Ingo; Hibbett, David; Schmoll, Monika; Kubicek, Christian P.; Ferreira, Patricia; Ruiz-Duenas, Francisco J.; Martinez, Angel T.; Kersten, Philip J.; Hammel, Kenneth E.; Gaskell, Jill A.; Cullen, Daniel 2009. Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proceedings of the National Academy of Sciences of the USA. Vol. 106, no. 6 (Feb. 10, 2009): pages 1954-1959. (Supporting information online at: http://www.pnas.org/content/106/6/1954/suppl/DCSupplemental )

    Cited

    Google Scholar

    Keywords

    Cellulose, fenton, lignin, cellulase, brown-rot, wood-decaying fungi, lignocellulose, fungi, genetics, biodegradation, biotechnology, genetic transcription, genomes, liquid chromatography, mass spectrometry, peptides, enzymes, molecular genetics, proteins, glycosidases, industrial applications, Postia placenta, decay fungi, secretome, wood decay, transcriptome, endoglucanase

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page