Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub


    Changes in climate as projected by state-of-the-art climate models are likely to result in novel combinations of climate and topo-edaphic factors that will have substantial impacts on the distribution and persistence of natural vegetation and animal species. We have used multivariate techniques to quantify some of these changes; the method employed was the Multivariate Spatio-Temporal Clustering (MSTC) algorithm. We used the MSTC to quantitatively define ecoregions for the People’s Republic of China for historical and projected future climates. Using the Köppen–Trewartha classification system we were able to quantify some of the temperature and precipitation relationships of the ecoregions. We then tested the hypothesis that impacts to environments will be lower for ecoregions that retain their approximate geographic locations. Our results showed that climate in 2050, as  projected from anthropogenic forcings using the Hadley Centre HadCM3 general circulation model, were sufficient to create novel environmental conditions even where ecoregions remained spatially stable; cluster number was found to be of paramount importance in detecting novelty. Continental-scale analyses are generally able to locate potentially static ecoregions but they may be insufficient to define the position of those reserves at a grid cell-by-grid cell basis.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Baker, B.; Diaz, Henry; Hargrove, William; Hoffman, Forrest. 2010. Use of the Köppen-Trewartha climate classification to evaluate climatic refugia in statistically derived ecoregions for the People’s Republic of China. Climatic Change 98:113-131.

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page