Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Jacqueline E. Mohan; Roger M. Cox; Louis R. Iverson
    Date: 2009
    Source: Canadian Journal of Forest Research. 39: 213-230.
    Publication Series: Scientific Journal (JRNL)
    Station: Northern Research Station
    PDF: View PDF  (2.58 MB)

    Description

    Increasing temperatures, precipitation extremes, and other anthropogenic influences (pollutant deposition, increasing carbon dioxide) will influence future forest composition and productivity in the northeastern United States and eastern Canada. This synthesis of empirical and modeling studies includes tree DNA evidence suggesting tree migrations since the last glaciation were much slower, at least under postglacial conditions, than is needed to keep up with current and future climate warming. Exceedances of US and Canadian ozone air quality standards are apparent and offset C02-induced gains in biomass and predispose trees to other stresses. The deposition of nitrogen and sulfate in the northeastern United States changes forest nutrient availability and retention, reduces reproductive success and frost hardiness, causes physical damage to leaf surfaces, and alters performance of forest pests and diseases. These interacting stresses may increase future tree declines and ecosystem disturbances during transition to a warmer climate. Recent modeling work predicts warmer climates will increase suitable habitat (not necessarily actual distribution) for most tree species in the northeastern United States. Species whose habitat is declining in the northeastern United States currently occur in Canadian forests and may expand northward with warming. Paleoecological studies suggest local factors may interact with, even overwhelm, climatic effects, causing lags and thresholds leading to sudden large shifts in vegetation.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Mohan, Jacqueline E.; Cox, Roger M.; Iverson, Louis R. 2009. Composition and carbon dynamics of forests in northeastern North America in a future, warmer world. Canadian Journal of Forest Research 39:213-230

    Cited

    Google Scholar

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/34769