Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub


    A series of laboratory fire spread experiments were completed to analyze the effect of terrain slope on marginal burning behavior of live chaparral shrub fuels that grow in the mountains of southern California. We attempted to burn single species fuel beds of four common chaparral plants under various fuel bed configurations and ambient conditions. Seventy-three (or 42%) of the 173 fires successfully propagated the 2.0 m length of the elevated fuel bed for slope percent ranging from –70% to 70%. There exists a critical slope above which fire spread is successful, and below which fire spread is unsuccessful. Critical slope varied widely with fuel type, moisture content, and fuel loading. Upslope and downslope orientations affected marginal burning behavior differently. In examining a special fuel bed slope set-up, it was found the upslope fire spread depended not only on the increased radiant heat transfer but also on the aerodynamic effect created by the interaction of the flame with the inclined surface. Under certain conditions, the convective heat induced by this interaction became the dominant mechanism determining fire spread success. A stepwise logistic regression model was developed from the data to predict the probability of successful fire spread. It is expected that this model may be helpful in providing guidelines for prescribed fire application.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Zhou, X.; Mahalingam, S.; Weise, D. 2005. Experimental Modeling of the Effect of Terrain Slope on Marginal Burning. n: Gottuk, D.; Lattimer, B., eds. 2005. Fire Safety Science Proceedings Eighth (8th) International Symposium International Association for Fire Safety Science (IAFSS). Intl. Assoc. for Fire Safety Science, Boston, MA , Beijing: 863-874


    Google Scholar


    chaparral, flame spread

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page