Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): E. H. Helmer; M. A. Lefsky; D. A. Roberts
    Date: 2009
    Source: Journal of Applied Remote Sensing, Vol. 3, 033505 (2009)
    Publication Series: Scientific Journal (JRNL)
    PDF: View PDF  (4.51 MB)

    Description

    We estimate the age of humid lowland tropical forests in Rondônia, Brazil, from a somewhat densely spaced time series of Landsat images (1975–2003) with an automated procedure, the Threshold Age Mapping Algorithm (TAMA), first described here. We then estimate a landscape-level rate of aboveground woody biomass accumulation of secondary forest by combining forest age mapping with biomass estimates from the Geoscience Laser Altimeter System (GLAS). Though highly variable, the estimated average biomass accumulation rate of 8.4 Mg ha-1 yr-1 agrees well with ground-based studies for young secondary forests in the region. In isolating the lowland forests, we map land cover and general types of old-growth forests with decision tree classification of Landsat imagery and elevation data. We then estimate aboveground live biomass for seven classes of old-growth forest.

    TAMA is simple, fast, and self-calibrating. By not using between-date band or index differences or trends, it requires neither image normalization nor atmospheric correction. In addition, it uses an approach to map forest cover for the self-calibrations that is novel to forest mapping with satellite imagery; it maps humid secondary forest that is difficult to distinguish from old-growth forest in single-date imagery; it does not assume that forest age equals time since disturbance; and it incorporates Landsat Multispectral Scanner (MSS) imagery. Variations on the work that we present here can be applied to other forested landscapes. Applications that use image time series will be helped by the free distribution of coregistered Landsat imagery, which began in December 2008, and of the Ice Cloud and land Elevation Satellite (ICESat) Vegetation Product, which simplifies the use of GLAS data. Finally, we demonstrate here for the first time how the optical imagery of fine spatial resolution that is viewable on Google Earth provides a new source of reference data for remote sensing applications related to land cover.

    Publication Notes

    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Helmer, E. H.; Lefsky, M. A.; Roberts, D. A. 2009. Biomass accumulation rates of Amazonian secondary forest and biomass of old-growth forests from Landsat time series and the Geoscience Laser Altimeter System. Journal of Applied Remote Sensing 3:033505.

    Cited

    Google Scholar

    Keywords

    tropical forest, forest disturbance, forest age, vegetation type, old growth, terra firme, várzea, cerrado, cerradão, igapó, change detection, image cubes, WBDI, deforestation

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/34887