Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub

    Description

    Heating soil during intense wildland fires or slash-pile burns can alter the soil irreversibly, resulting in many significant long-term biological, chemical, physical, and hydrological effects. To better understand these long-term effects, it is necessary to improve modeling capability and prediction of the more immediate, or first-order, effects that fire can have on soils. This study uses novel and unique observational data from an experimental slash-pile burn to examine the physical processes that govern the transport of energy and mass associated with fire-related soil heating. Included in this study are the descriptions of 1) a hypothesized fire-induced air circulation within the soil, and 2) a new and significant dynamic feedback between the fire and the soil structure. The first of these two hypotheses is proposed to account for the almost instantaneous order-of-magnitude increase in soil CO2 observed during the initiation of the burn. The second results from observed changes to the thermal conductivity of the soil, thought to occur during the fire, which allow the heat pulse to penetrate deeper into the soil than would occur without this change. The first ever X-ray computed tomography images of burn area soils are consistent with a change in soil structure and a concomitant change in soil thermal conductivity. Other ways that current technology can be used to aid in improving physically-based process-level models are also suggested.

    Publication Notes

    • You may send email to rmrspubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Massman, William J.; Frank, John M.; Mooney, Sacha J. 2010. Advancing investigation and physical modeling of first-order fire effects on soils. Fire Ecology. 6(1): 36-54.

    Keywords

    dynamic feedbacks, pore structure, soil mass transport, soil thermal forcing, surface boundary conditions

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/35013