Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Jonathan J. Stickel; Jeffrey S. Knutsen; Matthew W. Liberatore; Wing Luu; Douglas W. Bousfield; Daniel J. Klingenberg; Tim Scott; Thatcher W. Root; Max R. Ehrhardt; Thomas O. Monz
    Date: 2009
    Source: Rheologica acta. Vol. 48, no. 9 (Dec. 2009): pages 1005-1015.
    Publication Series: Miscellaneous Publication
    PDF: Download Publication  (684.45 KB)


    The conversion of biomass, specifically lignocellulosic biomass, into fuels and chemicals has recently gained national attention as an alternative to the use of fossil fuels. Increasing the concentration of the biomass solids during biochemical conversion has a large potential to reduce production costs. These concentrated biomass slurries have highly viscous, non-Newtonian behavior that poses several technical challenges to the conversion process. A collaborative effort to measure the rheology of a biomass slurry at four separate laboratories has been undertaken. A comprehensive set of rheological properties were measured using several different rheometers, flow geometries, and experimental methods. The tendency for settling, water evaporation, and wall slip required special care when performing the experiments. The rheological properties were measured at different concentrations up to 30% insoluble solids by mass. The slurry was found to be strongly shear-thinning, to be viscoelastic, and to have a significant concentration-dependent yield stress. The elastic modulus was found to be almost an order of magnitude larger than the loss modulus and weakly dependent on frequency. The techniques and results of this work will be useful to characterize other biomass slurries and in the design of biochemical conversion processing steps that operate at high solids concentrations.

    Publication Notes

    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Stickel, Jonathan J.; Knutsen, Jeffrey S.; Liberatore, Matthew W.; Luu, Wing; Bousfield, Douglas W.; Klingenberg, Daniel J.; Scott, C. Tim; Root, Thatcher W.; Ehrhardt, Max R.; Monz, Thomas O. 2009. Rheology measurements of a biomass slurry : an inter-laboratory study. Rheologica acta. Vol. 48, no. 9 (Dec. 2009): pages 1005-1015.


    Google Scholar


    Rheology, lignocellulose, viscoelasticity, biomass energy, viscosity, elasticity, modulus of elasticity, shear, slurry, biomass conversion, bioconversion, biorefining, biomass fuel

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page