Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub


    Increased use of remotely sensed data is a key strategy adopted by the Forest Inventory and Analysis Program. However, multiple sensor technologies require complex sampling units and sampling designs. The Recursive Restriction Estimator (RRE) accommodates this complexity. It is a design-consistent Empirical Best Linear Unbiased Prediction for the state-vector, which contains all sufficient statistics for the sampled population. RRE reduces a complex estimator into a sequence of simpler estimators. Also included are model-based pseudo-estimators and multivariate Taylor series approximations for covariance matrices. Together, these provide a unifi ed approach to detailed estimation in large, complex sample surveys.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Czaplewski, Raymond L. 2010. Complex sample survey estimation in static state-space. Gen. Tech. Rep. RMRS-GTR-239. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 124 p.


    Google Scholar


    FIA, sampling, recursive, Pythagorean regression, EBLUP, remote sensing

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page