Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): M. M. Clark; T. H. Fletcher; R. R. Linn
    Date: 2010
    Source: International Journal of Wildland Fire 19: 202-212
    Publication Series: Scientific Journal (JRNL)
    PDF: View PDF  (593.9 KB)


    The chemical processes of gas phase combustion in wildland fires are complex and occur at length-scales that are not resolved in computational fluid dynamics (CFD) models of landscape-scale wildland fire. A new approach for modelling fire chemistry in HIGRAD/FIRETEC (a landscape-scale CFD wildfire model) applies a mixture– fraction model relying on thermodynamic chemical equilibrium to predict combustion flame temperatures and product species compositions. The mixture–fraction approach is common in combustor modelling applications. However, since individual flame sheets are not resolved in HIGRAD/FIRETEC, application of the mixture–fraction approach requires the development of a sub-grid model, which is based on the two assumptions (i) that combustible gases are concentrated into distinct pockets surrounded by air and combustion products and (ii) that reaction is limited by the mixing of the surrounding air with combustible gases from these pockets. The pocket radius and the thickness of the mixing zone are key parameters used in this model to characterise the sub-grid region where reaction occurs. The development of this sub-grid gas phase model is presented along with simulation results for various types of vegetation, including grass, California chaparral and ponderosa pine.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Clark, M. M.; Fletcher, T. H.; Linn, R. R. 2010. A Sub-Grid, Mixture-Fraction-Based Thermodynamic Equilibrium Model for Gas Phase Combustion in FIRETEC: Development and Results. International Journal of Wildland Fire, 19, 202-212.


    Google Scholar

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page