Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): S. Mascheretti; P.J.P. Croucher; M. Kozanitas; L. Baker; M. Garbelotto
    Date: 2009
    Source: Molecular Ecology 18:22 4577-4590
    Publication Series: Scientific Journal (JRNL)
    Station: Pacific Southwest Research Station
    PDF: Download Publication  (474.74 KB)


    A total of 669 isolates of Phytophthora ramorum, the pathogen responsible for Sudden Oak Death, were collected from 34 Californian forests and from the ornamental plant-trade. Seven microsatellite markers revealed 82 multilocus genotypes (MGs) of which only three were abundant (>10%). Iteratively collapsing based upon minimum ╬ŽST, yielded five meta-samples and five singleton populations. Populations in the same meta-sample were geographically contiguous, with one exception, possibly explained by the trade of infected plants from the same source into different locations. Multidimensional scaling corroborated this clustering and identified nursery populations as genetically most distant from the most recent outbreaks. A minimum-spanning network illustrated the evolutionary relationships among MGs, with common genotypes at the centre and singletons at the extremities; consistent with colonization by a few common genotypes followed by local evolution. Coalescent migration analyses used the original data set and a data set in which local genotypes were collapsed into common ancestral genotypes. Both analyses suggested that meta-samples 1 (Santa Cruz County) and 3 (Sonoma and Marin Counties), act as sources for most of the other forests. The untransformed data set best explains the first phases of the invasion, when the role of novel genotypes may have been minimal, whereas the second analysis best explains migration patterns in later phases of the invasion, when prevalence of novel genotypes was likely to have become more significant. Using this combined approach, we discuss possible migration routes based on our analyses, and compare them to historical and field observations from several case studies.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Mascheretti, S.; Croucher, P.J.P.; Kozanitas, M.; Baker, L.; and Garbelotto, M. 2009. Genetic epidemiology of the Sudden Oak Death pathogen Phytophthora ramorum in California. Molecular Ecology 18:22 4577-4590. DOI: 10.1111/j.1365-294X.2009.04379.x.


    Google Scholar


    coalescent analysis, emergent forest disease, microsatellite, network analysis

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page