Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub

    Description

    This study investigated the inhibition of enzymatic hydrolysis by unbound lignin (soluble and insoluble) with or without the addition of metal compounds. Sulfonated, Organosolv, and Kraft lignin were added in aqueous enzyme-cellulose systems at different concentrations before hydrolysis. The measured substrate enzymatic digestibility (SED) of cellulose was decreased by 15% when SL was added to a concentration of 0.1 g/L due to nonproductive adsorption of enzymes onto lignin. Cu(II) and Fe(III) were found to inhibit enzymatic cellulose hydrolysis in the presence of lignin. Ca(II) and Mg(II) were found to reduce or eliminate nonproductive enzyme adsorption by the formation of lignin-metal complex. The addition of Ca(II) or Mg(II) to a concentration of 10 mM can almost completely eliminate the reduction in SED caused by the nonproductive enzyme adsorption onto the lignins studied (SL, OL, or KL at concentration of 0.1 g/L). Ca(II) was also found to reduce the inhibitive effect of bound lignin in pretreated wood substrate, suggesting that Ca(II) can also form complex with bound lignin on pretreated solid lignocelluloses. Significant improvement in SED of about over 27% of a eucalyptus substrate produced by sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) was achieved with the application of Ca(II).

    Publication Notes

    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Liu, H.; Zhu, J.Y.; Fu, S.Y. 2010. Effects of lignin-metal complexation on enzymatic hydrolysis of cellulose. Journal of Agricultural and Food Chemistry. 58(12): 7233-7238.

    Cited

    Google Scholar

    Keywords

    Biomass, utilization, biotechnology, pretreatment, lignocellulose, biodegradation, cellulose, hydrolysis, enzymes, industrial applications, lignin, calcium, magnesium, adsorption, absorption, Eucalyptus, iron, fermentation, sugars, hemicellulose, SPORL, bioconversion, biorefining, wood extractives, chemical utilization, saccharification

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/36618