Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Andrew S. Pike; F.N. Scatena; Ellen E. Wohl
    Date: 2010
    Source: Earth Surface Processes and Landforms. DOI: 10.1002/esp.1978
    Publication Series: Scientific Journal (JRNL)
    Station: International Institute of Tropical Forestry
    PDF: View PDF  (774.48 KB)

    Description

    An extensive survey and topographic analysis of fi ve watersheds draining the Luquillo Mountains in north-eastern Puerto Rico was conducted to decouple the relative infl uences of lithologic and hydraulic forces in shaping the morphology of tropical montane stream channels. The Luquillo Mountains are a steep landscape composed of volcaniclastic and igneous rocks that exert a localized lithologic infl uence on the stream channels. However, the stream channels also experience strong hydraulic forcing due to high unit discharge in the humid rainforest environment. GIS-based topographic analysis was used to examine channel profi les, and survey data were used to analyze downstream changes in channel geometry, grain sizes, stream power, and shear stresses. Results indicate that the longitudinal profi les are generally well graded but have concavities that refl ect the infl uence of multiple rock types and colluvial-alluvial transitions. Non-fl uvial processes, such as landslides, deliver coarse boulder-sized sediment to the channels and may locally determine channel gradient and geometry. Median grain size is strongly related to drainage area and slope, and coarsens in the headwaters before fi ning in the downstream reaches; a pattern associated with a mid-basin transition between colluvial and fluvial processes. Downstream hydraulic geometry relationships between discharge, width and velocity (although not depth) are well developed for all watersheds. Stream power displays a mid-basin maximum in all basins, although the ratio of stream power to coarse grain size (indicative of hydraulic forcing) increases downstream. Excess dimensionless shear stress at bankfull fl ow wavers around the threshold for sediment mobility of the median grain size, and does not vary systematically with bankfull discharge; a common characteristic in self-forming ‘threshold’ alluvial channels. The results suggest that although there is apparent bedrock and lithologic control on local reach-scale channel morphology, strong fluvial forces acting over time have been suffi cient to override boundary resistance and give rise to systematic basin-scale patterns.

    Publication Notes

    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Pike, Andrew S.; Scatena, F.N.; Wohl, Ellen E. 2010. Lithological and fluvial controls on the geomorphology of tropical montane stream channels in Puerto Rico. Earth Surface Processes and Landforms. DOI: 10.1002/esp.1978

    Cited

    Google Scholar

    Keywords

    lithology, hydraulics, morphology, mountain streams, channel profi les, colluvial–fl uvial processes

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/36711