Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): M.E. Fenn; E.B. Allen; S.B. Weiss; S. Jovan; L. Geiser; G.S. Tonnesen; R.F. Johnson; L.E. Rao; B.S. Gimeno; F. Yuan; T. Meixner; A. Bytnerowicz
    Date: 2010
    Source: Journal of Environmental Management. 91: 2404-2423
    Publication Series: Scientific Journal (JRNL)
    Station: Pacific Southwest Research Station
    PDF: Download Publication  (2.92 MB)


    Empirical critical loads for N deposition effects and maps showing areas projected to be in exceedance of the critical load (CL) are given for seven major vegetation types in California. Thirty-five percent of the land area for these vegetation types (99,639 km2) is estimated to be in excess of the N CL. Low CL values (3–8 kg N ha−1 yr−1) were determined for mixed conifer forests, chaparral and oak woodlands due to highly N-sensitive biota (lichens) and N-poor or low biomass vegetation in the case of coastal sage scrub (CSS), annual grassland, and desert scrub vegetation. At these N deposition critical loads the latter three ecosystem types are at risk of major vegetation type change because N enrichment favors invasion by exotic annual grasses. Fifty-four and forty-four percent of the area for CSS and grasslands are in exceedance of the CL for invasive grasses, while 53 and 41% of the chaparral and oak woodland areas are in exceedance of the CL for impacts on epiphytic lichen communities. Approximately 30% of the desert (based on invasive grasses and increased fire risk) and mixed conifer forest (based on lichen community changes) areas are in exceedance of the CL. These ecosystems are generally located further from emissions sources than many grasslands or CSS areas. By comparison, only 3–15% of the forested and chaparral land areas are estimated to be in exceedance of the NO3 leaching CL. The CL for incipient N saturation in mixed conifer forest catchments was 17 kg N ha−1 yr−1. In 10% of the CL exceedance areas for all seven vegetation types combined, the CL is exceeded by at least 10 kg N ha−1 yr−1, and in 27% of the exceedance areas the CL is exceeded by at least 5 kg N ha−1 yr−1. Management strategies for mitigating the effects of excess N are based on reducing N emissions and reducing site N capital through approaches such as biomass removal and prescribed fire or control of invasive grasses by mowing, selective herbicides, weeding or domestic animal grazing. Ultimately, decreases in N deposition are needed for long-term ecosystem protection and sustainability, and this is the only strategy that will protect epiphytic lichen communities.

    Publication Notes

    • Visit PNW's Publication Request Page to request a hard copy of this publication.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Fenn, M.E.; Allen, E.B.; Weiss, S.B.; Jovan, S., Geiser, L.; Tonnesen, G.S.; Johnson, R.F.; Rao, L.E.; Gimeno, B.S.; Yuan, F.; Meixner, T.; Bytnerowicz, A. 2010. Nitrogen critical loads and management alternatives for N-impacted ecosystems in California. Journal of Environmental Management. 91: 2404-2423.


    Google Scholar


    Critical loads, California ecosystems, Nitrogen deposition, Eutrophication, Nitrogen response thresholds, Air pollution effects, Management options, Grassland, Coastal sage scrub, Desert, Pinyon-juniper, Forest, Chaparral, Oak woodland, Epiphytic lichens

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page