Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): A. J. Shirk; D. O. Wallin; S. A. Cushman; C. G. Rice; K. I. Warheit
    Date: 2010
    Source: Molecular Ecology. 19: 3603-3619.
    Publication Series: Scientific Journal (JRNL)
    Station: Rocky Mountain Research Station
    PDF: View PDF  (617.44 KB)

    Description

    Populations in fragmented landscapes experience reduced gene flow, lose genetic diversity over time and ultimately face greater extinction risk. Improving connectivity in fragmented landscapes is now a major focus of conservation biology. Designing effective wildlife corridors for this purpose, however, requires an accurate understanding of how landscapes shape gene flow. The preponderance of landscape resistance models generated to date, however, is subjectively parameterized based on expert opinion or proxy measures of gene flow. While the relatively few studies that use genetic data are more rigorous, frameworks they employ frequently yield models only weakly related to the observed patterns of genetic isolation. Here, we describe a new framework that uses expert opinion as a starting point. By systematically varying each model parameter, we sought to either validate the assumptions of expert opinion, or identify a peak of support for a new model more highly related to genetic isolation. This approach also accounts for interactions between variables, allows for nonlinear responses and excludes variables that reduce model performance. We demonstrate its utility on a population of mountain goats inhabiting a fragmented landscape in the Cascade Range, Washington.

    Publication Notes

    • You may send email to rmrspubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Shirk, A. J.; Wallin, D. O.; Cushman, S. A.; Rice, C. G.; Warheit, K. I. 2010. Inferring landscape effects on gene flow: A new model selection framework. Molecular Ecology. 19: 3603-3619.

    Keywords

    circuit theory, gene flow, isolation by distance, landscape resistance, mountain goat

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/37061