Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Frank H. KochJohn W. Coulston
    Date: 2010
    Source: In: Pye, John M.; Rauscher, H. Michael; Sands, Yasmeen; Lee, Danny C.; Beatty, Jerome S., tech. eds. Advances in threat assessment and their application to forest and rangeland management. Gen. Tech. Rep. PNW-GTR-802. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest and Southern Research Stations: 609-620
    Publication Series: General Technical Report (GTR)
    Station: Pacific Northwest Research Station
    PDF: View PDF  (437.0 KB)

    Description

    Current information on broad-scale climatic conditions is essential for assessing potential distribution of forest pests. At present, sophisticated spatial interpolation approaches such as the Parameter-elevation Regressions on Independent Slopes Model (PRISM) are used to create high-resolution climatic data sets. Unfortunately, these data sets are based on 30-year normals and rarely incorporate up-to-date data. Furthermore, because they are constructed on a monthly rather than a daily time step, they do not directly measure simultaneous occurrence of multiple climatic conditions (e.g., days in the past year with appropriate temperature and adequate precipitation). Yet, the actual number of days—especially consecutive days—where multiple conditions are met could be significant for pest dispersal or establishment. For the sudden oak death pathogen (Phytophthora ramorum), we used National Oceanic and Atmospheric Administration daily weather station data to create current, national-scale grids depicting co-occurrence of multiple climatic conditions.

    For each station, we constructed two count-based variables: the total number of days and the greatest number of consecutive days in a year where the station met several conditions (temperature, rain/fog, relative humidity). We then employed gradient plus inverse distance squared (GIDS) interpolation to generate grids (4-km2 resolution) of these variables for 5 years (2000-2004). The GIDS technique weights standard inverse distance squared interpolation using coefficients based on geographic location (x, y) and a spatial covariate such as elevation. Using these variables, we determined the GIDS coefficients for each output grid cell via Poisson regression on the 30 closest stations. We also performed model selection to ensure only significant variables contributed to the GIDS coefficients. We compared the GIDS approach to cokriging and detrended kriging using cross-validation and found similar accuracies among all three interpolation methods. We also compared the output grids to maps assembled from the PRISM data depicting the probability all conditions were met in a given year. As expected, we found differences in areas highlighted as suitable for P. ramorum establishment by the two methods. We suggest that using current weather data and calculating the variable of interest directly will provide more practical information for mapping forest pest risk.

    Publication Notes

    • You may send email to pnw_pnwpubs@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Koch, Frank H.; Coulston, John W. 2010. Modeling current climate conditions for forest pest risk assessment. In: Pye, John M.; Rauscher, H. Michael; Sands, Yasmeen; Lee, Danny C.; Beatty, Jerome S., tech. eds. Advances in threat assessment and their application to forest and rangeland management. Gen. Tech. Rep. PNW-GTR-802. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest and Southern Research Stations: 609-620.

    Keywords

    Climate, forest pests, GIDS, Phytophthora ramorum, risk, spatial interpolation.

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/37100