Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Mark Coleman; Deborah Page-Dumroese; Jim Archuleta; Phil Badger; Woodum Chung; Tyron Venn; Dan Loeffler; Greg Jones; Kristin McElligott
    Date: 2010
    Source: In: Jain, Theresa B.; Graham, Russell T.; Sandquist, Jonathan. Integrated management of carbon sequestration and biomass utilization opportunities in a changing climate: Proceedings of the 2009 National Silviculture Workshop; 2009 June 15-18; Boise, ID. Proceedings RMRS-P-61. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. p. 159-168.
    Publication Series: Proceedings (P)
    Station: Rocky Mountain Research Station
    PDF: View PDF  (454.8 KB)

    Description

    We describe a portable pyrolysis system for bioenergy production from forest biomass that minimizes long-distance transport costs and provides for nutrient return and long-term soil carbon storage. The cost for transporting biomass to conversion facilities is a major impediment to utilizing forest biomass. If forest biomass could be converted into bio-oil in the field, it may be more profitable to utilize forest biomass for bioenergy. Bio-oil can substitute for fuel oil, or be used as a crude oil and further refined into additional products. Transporting energy-dense bio-oil is more cost effective than transporting bulky, low-value biomass. In-woods pyrolysis can also address concerns over removing nutrients and carbon from forest sites through reapplication of bio-char, a pyrolysis byproduct, which is equivalent to the charcoal found in all fire ecosystems. Bio-char is 70-80 percent carbon and retains most nutrients contained in biomass. It can be used as a soil amendment to enhance soil productivity through a liming effect, which improves cation exchange capacity and base saturation, increasing anion availability, improving water holding capacity and decreasing bulk density.

    Publication Notes

    • You may send email to rmrspubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Coleman, Mark; Page-Dumroese, Deborah; Archuleta, Jim; Badger, Phil; Chung, Woodum; Venn, Tyron; Loeffler, Dan; Jones, Greg; McElligott, Kristin. 2010. Can portable pyrolysis units make biomass utilization affordable while using bio-char to enhance soil productivity and sequester carbon? In: Jain, Theresa B.; Graham, Russell T.; Sandquist, Jonathan. Integrated management of carbon sequestration and biomass utilization opportunities in a changing climate: Proceedings of the 2009 National Silviculture Workshop; 2009 June 15-18; Boise, ID. Proceedings RMRS-P-61. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. p. 159-168.

    Keywords

    bioenergy, bio-oil, carbon sequestration, fuels reduction, soil productivity

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page