Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub

    Description

    Solid and microcellular components made of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/ poly (butylenes adipate-co-terephthalate) (PBAT) blend (weight ration of PHBV:PBAT = 30:70), recycled wood fiber (RWF), and nanoclay (NC) were prepared via a conventional and microcellular-injection molding process, respectively. Morphology, thermal properties, and mechanical properties were investigated. The addition of 10% RWF (both untreated and silate-treated) reduced the cell size and increased the cell density of the microcellular components. Also, the addition of 10% RWF (both untreated and silane-treated) generally increased the specific Young's modulus and tensile strength, but decreased the specific toughness and strain-at-break in both solid and microcellular components. Moreover, unlike the near PHBV/PBAT blend, microcellular PHBV/PBAT/RWF (both untreated and silane-treated) composites showed higher specific toughness and strain-at-break compared to their solid counterparts. In addition, higher specific toughness and strain-at-break was observed in the PHBV/PBAT/untreated-RWF composite compared with the PHBV/PBAT/silane-treated RWF composite, particularly in the microcellular components. The degree of PHBV crystallinity increased significantly in both solid and microcellular PHBV/PBAT/RWF composites although the degree of PHBV crystallinity in the solid components was slightly higher than that of their microcellular counterparts. The effects of adding 2% nanoclay on the properties of the PHBV/PBAT/silane-treated-RWF composite were also investigated. The nanoclays exhibited an intercalated structure in the composites based on XRD analysis and did not induce significant changes in cell morphology and mechanical properties of the PHBV/PBAT/silane-treated-RWF composite. However, it did improve its thermal stability.

    Publication Notes

    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Javadi, Alireza; Srithep, Yottha; Lee, Jungjoo; Pilla, Srikanth; Clemons, Craig; Gong, Shaoqin; Turng, Lih-Sheng. 2010. Processing and characterization of solid and microcellular PHBV/PBAT blend and its RWF/nanoclay composites. Composites, Part A, Applied science and manufacturing. Vol. 41, no. 8 (Aug. 2010): p. 982-990.

    Cited

    Google Scholar

    Keywords

    Clay, composite materials, mechanical properties, injection molding of plastics, thermoplastic composites, plastics, extrusion, wood-plastic composites, recycled products, recycling, thermal properties, modulus of elasticity, elasticity, silane, nanoclay, strength, PBAT, PHBV, wood fibers, wood-plastic materials, tensile strength, crystallinity, thermal degradation, biocomposites

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/37344