Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Matthew P. ThompsonDavid E. CalkinJulie W. Gilbertson-DayAlan A. Ager
    Date: 2011
    Source: Environmental Monitoring and Assessment. 179: 217-239.
    Publication Series: Scientific Journal (JRNL)
    Station: Rocky Mountain Research Station
    PDF: View PDF  (1.91 MB)

    Description

    In this article, we describe the design and development of a quantitative, geospatial risk assessment tool intended to facilitate monitoring trends in wildfire risk over time and to provide information useful in prioritizing fuels treatments and mitigation measures. The research effort is designed to develop, from a strategic view, a first approximation of how both fire likelihood and intensity influence risk to social, economic, and ecological values at regional and national scales. Three main components are required to generate wildfire risk outputs: (1) burn probability maps generated from wildfire simulations, (2) spatially identified highly valued resources (HVRs), and (3) response functions that describe the effects of fire (beneficial or detrimental) on the HVR. Analyzing fire effects has to date presented a major challenge to integrated risk assessments, due to a limited understanding of the type and magnitude of changes wrought by wildfire to ecological and other nonmarket values. This work advances wildfire effects analysis, recognizing knowledge uncertainty and appropriately managing it through the use of an expert systems approach. Specifically, this work entailed consultation with 10 fire and fuels program management officials from federal agencies with fire management responsibilities in order to define quantitative resource response relationships as a function of fire intensity. Here, we demonstrate a proofof- concept application of the wildland fire risk assessment tool, using the state of Oregon as a case study.

    Publication Notes

    • You may send email to rmrspubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Thompson, Matthew P.; Calkin, David E.; Gilbertson-Day, Julie W.; Ager, Alan A. 2011. Advancing effects analysis for integrated, large-scale wildfire risk assessment. Environmental Monitoring and Assessment. 179: 217-239.

    Cited

    Google Scholar

    Keywords

    wildfire risk, risk assessment, effects analysis, expert system, uncertainty

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page