Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub


    Recent studies in the Western United States have supported climate scenarios that predict a higher occurrence of large and severe wildfires. Knowledge of the severity is important to infer long-term biogeochemical, ecological, and societal impacts, but understanding the sensitivity of any severity mapping method to variations in soil type and increasing charcoal (char) cover is essential before widespread adoption. Through repeated spectral analysis of increasing charcoal quantities on six representative soils, we found that addition of charcoal to each soil resulted in linear spectral mixing. We found that performance of the Normalised Burn Ratio was highly sensitive to soil type, whereas the Normalised Difference Vegetation Index was relatively insensitive. Our conclusions have potential implications for national programs that seek to monitor long-term trends in wildfire severity and underscore the need to collect accurate soils information when evaluating large-scale wildland fires.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Smith, Alistair M. S.; Eitel, Jan U. H.; Hudak, Andrew T. 2010. Spectral analysis of charcoal on soils: Implications for wildland fire severity mapping methods. International Journal of Wildland Fire. 19: 976-983.


    ash, char, combustion residue, remote sensing

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page